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High-Order Finite Elements for Inhomogeneous
Acoustic Guiding Structures

GEOFFREY O. STONE

Abstract—>Silvester’s high-order finite-element formulation for
potential problems is extended to enable the analysis of acoustic
wave propagation in lossless isotropic, uniform, and inhomogeneous
guiding structures. The formulation allows a large class of problems
to be solved using elements of any desired order, with only minimal
computer coding. Three examples are cited—one involving a simple
homogeneous region having an analytic solution, and two inhomo-
geneous problems. Good agreement with other methods and with
limiting cases is obtained in each case.

I. INTRODUCTION
T HE PROPAGATION characteristics of surface acous-

tic waveguides and couplers are more difficult to ob-

tain than their electromagnetic (EM) counterparts.
Even a structure as simple as a free rectangular bar is not
amenable to exact solution [1].

The various structures which have been proposed for
guiding surface acoustic waves have been analyzed using a
variety of approximation procedures [2]-[4], each having its
own particular limitations. Numerical methods of solution
involving field discretization, whose advantages (and limita-
tions) are well known in other contexts [5], [6], are beginning
to play an important role in the analysis of these structures
[7]-[9]. It is worth noting here that the advantages and
limitations of the above methods tend to make them comple-
mentary rather than redundant.

High-order finite-element methods have been used ex-
tensively in solid mechanics [13], [15]. However, there are
two aspects which make a new formulation desirable for
acoustic guiding analysis: 1) the traveling-wave nature of the
solutions of interest, and 2) the desirability of a high-order
formulation which separates the geometric and material
properties of a particular problem from the essential features
of the variational principle.

The purpose of this paper is to develop such a formulation
as an extension of Silvester’s systematic approach [6], em-
phasizing the application to nonhomogeneous structures.

In Section II the appropriate variational principle is
briefly stated, followed in Section III by a discussion of the
relevant boundary and interface conditions. The finite-ele-
ment formulation is developed in Section IV, and in Section V
some examples illustrate the formulation.

I1. VARIATIONAL PRINCIPLE

A complete mode set can be found for any structure, con-
sisting of lossless isotropic materials uniform in the z direction,
by taking a displacement function of the form

u = u(the, ty, ju,) exp {j(wt — B2)}
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where 4, u,, and u, are real functions of the x, y Cartesian
coordinates transverse to the direction of propagation, for
real 8.

The Lagrange density function £ for the problems being
considered may then be written in the convenient form

£m = Fpmae(u? + u? 4 u.?)
— 1O + 25m)([See |2 + Sy |2 + [S22{?)
+ M0 Re (SeoSyy* + SpuSs* + S:aSea®)
+ 4™ (S5 |2 4 18,12+ S D) (1)

where A® and u‘ are the Lame constants, p®™ is the mass
density, and the superscripts denote the mth medium, as-
sumed homogeneous and isotropic. The strain components S
in (1) are given by

0t du,
Sez = —306_’ Syy = —a_y_y S.. = Bu,
1/0u, Ouy
Szy = "<"_’_ + ——> = Sy:c
2\ dy ES
1 /ou,
Sys = 5.7 (’a_y_ - ﬂuy) = Su
Szz = 1]' (auz - ﬂua:) = S:cz (2)
2 dx

where the factor exp {j(wi—3%)} is omitted in each case. Note
that (1) is equivalent to the forms given in [10] and [11], ex-
cept that complex phasor quantities are taken into account by
conjugating all strain tensor components in the potential
energy term.

The exp {jwt} variation for all ¢ means that initial condi-
tions and past history are of no account. Furthermore,
vanishing stress is prescribed on the boundary of the structure
and body forces are neglected. Then for a unit length in the
direction of propagation, the classical form of Hamilton's
principle [10] reduces to

§ QL™ =3 5Lm =0

where
SL™ = 6f L) 48, (3)
S(m)

On taking the variation and integrating by parts, (3)
becomes

> { f( )[()\(m) + u™)VV.u + w2y — pmy].sudS
Sm

—f T, su ds} =0 (4
B™
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where V is the vector operator e,(0/9x)+e,(0/9y)
+e,(—jB), S™ is the surface formed by taking a transverse
cross section of the mth medium, B™ is the boundary of
S and T,™ is the surface traction on B™ . Summation is
taken over all media and ¥ and its variation du are constrained
to be continuous everywhere.

The surface integrals in (4) yield the equations of motion
within a medium and the contour integrals yield the natural
boundary conditions.

III. Bounpary CONDITIONS

There are five boundary conditions to be considered on a
transverse cross section of the structures of interest: 1) a
solid—air interface, regarded as a traction-free boundary; 2)
a rigid boundary; 3) a line of symmetry; 4) a line of anti-
symmetry; and 5) a solid—solid interface.

Condition 1) occurs more frequently than 2). The dis-
placement model formulation [15] yields prescribed stresses
on the boundary [including 2) above] as a natural condition,
and will be used here.! Of the two methods [14] of satisfying
the remaining conditions, the method of forced constraints is
the easier to implement. This is because constraints on the
displacement components may be imposed simply by delet-
ing (or ignoring) a row and column of the relevant element
matrices. The alternative method required additional terms
in the variational integral, and is therefore less attractive in
the present formulation. Using the appropriate constraints
on displacement components, leaving the other components
unconstrained, and using the contour integrals in (4), it
follows that conditions 2)—4) may now be satisfied.

On a solid-solid interface, all displacement components
and the three stress components on the interface must all be
continuous. In the displacement model, displacement con-
tinuity is already constrained. Furthermore, consideration of
the integral along the interface from the contour integrals in
(4) shows that stress on the interface is continuous as a natural
condition for constrained displacement continuity. (This
follows from the classical form of Hamilton’s principle [14].)

It is noteworthy that the above conditions are less of a
problem than in multiple dielectric EM guiding [12], where,
for the usual formulation, the variational principle must be
modified to accommodate the required interface conditions.

IV. FiNniTE-ELEMENT FORMULATION

The popular displacement (or compatible) model is em-
ployed [15], and Silvester’s notation is adopted where ap-
plicable [6].

A. Displacement Interpolation

Consider the rth triangular element, assumed to be en-
tirely in medium m. Local area coordinates are defined for
any point (x, ) in the triangle [5]

¢ = (a: + bx + cy)/2A

where A is the triangle area; b;=y;—¥k; ¢, =Xr—%;; @i= %Y
—xy;; (%:, ¥;) are the coordinates of vertex 7 of the triangle;
¢ ranges from 1 to 3; and %, j, and & are cyclic (j=i+1, &
=j-+1, mod 3). A set of # uniformly spaced points is defined
over the triangle and ordered in the usual way [6], where
n=(N+1)(N+2)/2 and N>1 is an integer. Let the function

1 Other formulations {15}, [17], [18] would require either additional
terms in the variational integral or constrained stress components on
traction-free boundaries, but could equally well be used.
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4 be represented by the discrete variables u,, at the respec-
tive triangle points p=1, - + -, n. The interpolated function
for u, then is

uﬂ&(g‘l) {2 (3) = Zap(g‘la 2 §3)uxp (5)
=1

where the o, are Newton—Cotes interpolation polynomials of
order N [6]. Similar expressions apply for u, and #, in terms of
#yp and u,,, respectively. Partial x and y derivatives follow
immediately, for example

0, 8

oy a=1

M:

—— uxq

-1 24 9%
while a typical term encountered on taking the variation is

0 [Ou, au,,> 3. b,e; Bap day

3Ey e

a=1 i=1 ;=1 AA% 98¢ 0%

Uyq.
dy ox v

Otzp

The task of expanding 8L, (the variation of the rth
element) in terms of the discrete variables and taking the
variation is indeed tedious, although straightforward in prin-
ciple. When this is done, terms can be grouped to permit easy
separation of geometric and material properties from terms
independent of these. The main results of the formulation are
given in the following paragraphs, omitting the detail of the
development.

B. Fundamental Maitrices

It is found that just five fundamental matrices are suf-
ficient to represent 8L, together with a set of simple co-
efficients. Three of these matrices each have three permuta-
tions equivalent to a redefinition of the triangle variables ac-
cording to the vertex from which the element is viewed. The
method of permutation is as described for Q matrices [6].
The dimensionless fundamental matrices are defined below
for a typical element pg (p, g=1, - - - ,n):

1
Mlpq = Z—A—fapaq dS
Moy, = _l_f(fff — ﬁ‘i’) (ffﬂ — ix}) s
2A a¢, g at; Ll
1 3. dayp O da
Msp, = ___fz_‘_l’(__g — __£> A
2A i1 0¢; \0¢; a¢k
1

M (i)___f(a Ex_p_i_a _a_a_q>d5
e 24 Yo T ot
day,

) 1 day
Myp, = ?A_f %l T ;{) S (6)

where the superscripts refer to permutation numbers; the
%, 1, and £ are cyclic (mod 3); and integration is taken over
the surface of the finite element.

The first three of these have appeared in other contexts in
the literature: [M,] and [M.]® are directly related to Sil-
vester's T and Q) matrices;? and [Ms] is the coupling matrix
presented by Daly [12]. The remaining two are necessary to

2 [My] is obtained by halving the T matrix, while [M,]® is just the
(O matrix, both as presented in [6, appendix], which differs in minor
respects from the definitions of T and Q.
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Fig. 1. Conventions used for included and inclined angles § and ¢ for

a triangular element.

represent the B-dependent terms in 8L, and have been
evaluated for up to fourth-order elements [9]. These matrices
define the coupling between the #, and #, field and between
the u, and u, field for traveling-wave solutions.

C. Geometric Matrices

A set of geometric matrices, which arise from the grouping
of terms in 8L,“, can now be defined. They are expressed in
terms of (6) and coefficients related to the geometry of the
element under consideration. The geometric matrices are also
dimensionless, and are defined as follows:

[Gi] = (2a/m%)[M,]
[Gz] = Zcot oi[Mz](i)
6] = 3% Wi + ) [31,]

P sin 6;

sin (‘#J + ‘,/k)

(G = X —————[M:]®

i sin 6;
[Gs] = [M:]
(Go] = Z (bi/B)[M]®
[G:] = 22 (0u/B) [M5] @
[Gs] = Z (co/B)[M]®
[Gs] = Z (co/B) [ M5] @ o

where the summations are taken for t=1, - - -, 3; 4, j and %
are cyclic (mod 3); and % is any convenient dimension of the
profile being analyzed. y; is the inclination of the side opposite
vertex % to the x axis and 6; is the interior angle at vertex ¢
(Fig. 1).

At this point it may be noted that the formulation must be
orientation dependent with respect to rotation about the z
axis. This is because the components u, and u, are themselves
orientation dependent, in contrast to the EM case which is
formulated only in terms of z-directed components [6], [12].

D. Element Matrix Assembly

The expansion of (3) reveals that there are terms both in 8
and B% This suggests that normalized phase “constant”
B=pBh could best be used as the independent variable in the
determination of the modal spectrum leaving the squared
normalized phase velocity » =12 /uD to be extracted as the
eigenvalue. Using this scheme, the element variation is ap-
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proximated by

8L, ~ pm([4

| =B (®)

where

[U,] = [{”w}s {”yp}% {“zp}]t: p=1---,n

The element matrices [4,] and [B,] divide naturally into the
partitions by columns, as indicated by the partitioning of
[U,], and by rows according to the equations arranged in
the order

ALY (3L, } 'aL,<m>}
{ Oyp }’ { Ouyp ’ { 0%.p ’
The result is that [4,] and [B,] are both symmetric, and the
latter is also positive definite.
Finally, the partitions [P4);; and [Pgly; of [4,] and
[B,], respectively, where 4, =1, - - -, 3, may now be written

in terms of (7), where symmetry requires only six of each set
to be defined:

[Palu = B°[Gi] + Ci[Ga] + CalGi
PA]m = Cz[G4] + CS[GB]

PA]13 = E(C3[G6] + C2[G7])

Pale = B[G1] + Ci[G2] — C.[G]

[
[
[
[
[
[
[

Palss = B(Cs[Gs] 4 C.[Ga])

PA]33 = B2R(m) [GI] + [G2]

Ppli = [Pgla2 = [Palss = B2, /3,0)2[G,]
Pgliz = [Pslis = [Pslas = 0 (9)

where 7,™ = (u™ /p(™}1/2 j5 the bulk shear velicity in the mth
medium, Ci=(R™+1)/2, C;=(R™ —1)/2, C3=(R™ —3)/2,
and R = ()\(m) -{-ZM(’”))/;L("’).

Summation of the element variations (8) is performed in
the usual manner [13], and the matrix-eigenvalue/eigenvector
problem is solved by standard methods.

E. Computer Programming

The most significant feature of the above formulation is
that it requires only minimal computer coding for its im-
plementation. To illustrate this, assume that node coordinates
and interconnections are provided and that a compatible set
of variables has been generated for each triangle (or read from
data). In a prototype program, which accepts any problem
allowed by the formulation, the complete assembly of the
matrices was effected in 150 Fortran statements (including
four supporting routines for the permutation and manipula-
tion of matrices). The time taken for this assembly is always
insignificant compared to the solution time for the matrix
eigenvalue—eigenvector problem.

V. ExaAMPLES

Testing of the formulation is a problem because there are
few acoustic propagation problems amenable to exact solu-
tion. Good agreement with some experimental results was
reported in [9] for a homogeneous ridge guide. Three ex-
amples will be given here—a more exact test for a homo-
geneous problem, a layered plate with straight crested solu-
tions, and a nonhomogeneous surface acoustic waveguide on
a finite substrate.
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Fig. 2. Homogeneous rectangular structure. (a) Two-dimensional cross
section showing boundary conditions on displacement components.
(b) Fourth-order element discretization.

A. Homogeneous Rectangular Region

Waldron [20] has pointed out that the “cardinal” surfaces
encountered at physical boundaries of elasticity problems
preclude separable solutions. However, it is a simple matter
to construct problems, which may not be physical, having as
boundary conditions a combination of the symmetry condi-
tions outlined in Section III. Such problems can yield separa-
ble solutions. Consider the homogeneous isotropic rectangular
region 0 <x <1, 0<y<0.5, bounded by symmetry conditions
on x=0 and ¥y=0 and antisymmetry conditions on x=1 and
y=0.5 [Fig. 2(a)]. Putting £=0.5 and

it

u, = D sin k.x cos ky,y

u, = E cos k.x sin &,y

. = jF cos k,x cos kyy (10)
it follows that the prescribed boundary conditions will be
satisfied if

ky = qm

where p and ¢ are odd integers, Substitution of (10) into the
displacement wave equations results in a 3 X3 matrix eigen-
value problem, which has been solved for the displacement
amplitudes in (10) and phase velocity, for §=1.5 and Pois-
son’s ratio=%. The problem has also been solved using the
fourth-order finite-element discretization shown in Fig. 2(b).
The first few eigenvalues obtained from the exact solution and
corresponding percentage deviations in the finite element
solutions are summarized in Table I. Agreement is close and
is better than 1 percent for the first 13 modes for the dis-
cretization used. Table II shows the displacement field am-
plitudes for mode 1, again showing the close agreement.

B. Layered Plate

Consider an infinite plate of thickness 2s, layered on both
sides by a second material of thickness % (Fig. 3). The two
limiting cases s/k=0 (infinite plate, thickness 2%) and s/k
— o (layered half space) have known solutions. The funda-
mental Rayleigh-type mode for this structure has been
analyzed using the above formulation by constraining the .
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Dimensions of the layered plate, infinite in the x direction and
symmetric about the x axis.

Fig. 3.

kX
~——0 Tolstoy and Usdin, s/h= c0
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Fig. 4. Phase-velocity dispersion curves for the fundamental antisym-
metric mode of the layered plate, with s/k as parameter, u®/u®
=13.77, p@/p®W=1.39, and Poisson’s ratio=0.25 in each medium.
Full curves are a—Tolstoy-Usdin theory [21], and b—calculated
from plate equations. Dashed curves are for finite-element theory and
dotted line is limit gradient at =0, calculated from Tiersten [2].

TABLE 1
EIGENVALUES FOR RECTANGULAR HOMOGENEOUS REGION
Mode}] pg ga;act alue |-Y 2 Finite Element Soln.
Lgenvalu Ve % deviation
1 11 9.483114 ~0.00009
2 11 2,37078 0.0004%
3 11 2.37078 0.001L
4 3L 18,2561 0.0061
5 31 4,5640 0.03
6 31 4.5640 0,06

Note: B=1.5; Poisson’s ratio=1%.

TABLE I1
EIGENVECTOR FOR MODE 1, TABLE [
Displacement Finite Element Solutiocn
Amplitude
D 0.5000 0.4992
E 1l.0000 1.0000
F 0.3549 0.9546

field to zero and analyzing a narrow strip to enforce straight
crested solutions. Dispersion curves obtained for various
s/h using this procedure are plotted in Fig. 4 (dashed curves).
Good agreement is obtained with the limiting cases: Tolstoy
and Usdin’s [21] layered half-space calculation (whose ma-
terial constants were used), and with plate modes, calculated
from equations in [22]. The gradient of the curve at =0
(dotted line, Fig. 4) was calculated from Tiersten [2, eq.
4.15], allowing for the different normalization used there.
Excellent agreement has also been obtained with Tiersten’s
gold on fused quartz layered half-space calculation. In every
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Fig. 5. Geometry of rectangular gold overlay on a rectangular fused
quartz substrate.
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Fig. 6. Dispersion curves for the gold overlay on a fused quartz sub-

strate having the geometry of Fig. 5 for s/w=10 and with G=w/h
as parameter, Tiersten’s result for G=15.6 on an infinite substrate is
shown (full curve) for comparison with finite-element theory (dashed
curves).

case, the displacement functions were very nearly straight
crested, as required.

C. Overlay Guide

The ability of an overlay of gold on fused silica to guide
surface acoustic waves was first reported by White [19] and
analyzed by Tiersten [2]. Consider such a guide on a prac-
tical (finite) substrate having the dimensions indicated in
Fig. 5. Dispersion characteristics have been obtained for the
first mode symmetric about the bisector of the overlay for
s/w=10 and various G=w/k (Fig. 6).

The curves agree closely with other analyses of the un-
bounded problem [2], [23], except at low frequencies where
the transition from the guide mode to the first antisymmetric
mode of the substrate is clearly evident. Below this transition
frequency, displacement fields show that the mode is en-
tirely characteristic of the substrate, and therefore cannot be
said to be guided by the overlay. Analysis shows that the
vertical sides of the substrate have little effect on the curves
of Fig. 6. It follows that low-frequency performance for
s/w##10 can be estimated using the linear relationship be-
tween infinite plate characteristics and plate thickness.

VI. CONCLUSIONS

The finite-element formulation presented enables a large
class of acoustic propagation problems to be solved. In prin-
ciple, modes of propagation may be determined for any
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structure whose cross section consists of regions of lossless
homogeneous isotropic media in rigid contact and uniform in
the direction of propagation Only minimal computer coding
is required to set up finite elements of any desired order. The
three examples cited demonstrate the accuracy and versatility
of the method and represent a comprehensive test of the
formulation, showing close agreement with other analyses.
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