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High-Order Finite Elements for Inhomogeneous

Acoustic Guiding Structures

GEOFFREY O. STONE

Absfracf—Silvester’s high-order finite-element formulation for
potential problems is extended to enable the analysis of acoustic
wave propagation in lossless isotropic, uniform, and inhomogeneous
guiding structures. The formulation allows a large class of problems
to be solved using elements of any desired order, with only minimal
computer coding. Three examples are cited—one involving a simple
homogeneous region having an analytic solution, and two inhomo-
geneous problems. Good agreement with other methods and with
limiting cases is obtained in each case.

I. INTRODUCTION

T

HE PROPAGATION characteristics of surface acous-

tic waveguides and couplers are more difficult to ob-

tain than their electromagnetic (EM) counterparts.

Even a structure as simple as a free rectangular bar is not

amenable to exact solution [I].

The various structures which have been proposed for

guiding surface acoustic waves have been analyzed using a

variety of approximation procedures [2]–[4], each having its

own particular limitations. Numerical methods of solution

involving field discretization, whose advantages (and Imitat-

ions) are well known in other contexts [5], [6], are beginning

to play an important role in the analysis of these structures

[7]-[9]. It is worth noting here that the advantages and

limitations of the above methods tend to make them comple-

mentary rather than redundant.

High-order finite-element methods have been used ex-

tensively in solid mechanics [13], [15]. However, there are

two aspects which make a new formulation desirable for

acoustic guiding analysis: 1) the traveling-wave nature of the

solutions of interest, and 2) the desirability of a high-order

formulation which separates the geometric and material

properties of a particular problem from the essential features

of the variational principle.

The purpose of this paper is to develop such a formulation

as an extension of Silvester’s systematic approach [6], em-

phasizing the application to nonhomogeneous structures.

I n Section II the appropriate variational principle is

briefly stated, followed in Section III by a discussion of the

relevant boundary and interface conditions. The finite-ele-

ment formulation is developed in Section IV, and in Section V

some examples illustrate the formulation.

II. VARIATIONAL PRINCIPLE

A complete mode set can be found for any structure, con-

sisting of Iossless isotropic materials uniform in the z direction,

by taking a displacement function of the form

u = u(uc, 24,, ju.) exp {j(cot – /32) }

Manuscript received January 8, 1973. This work was supported in
part by the Australian Radio Research Board. This work is part of a
dissertation submitted to the Department of Electrical Engineering,
University of Melbourne, Parkville, VIC., Australia, in partial fulfillment
of the requirements for the Ph.D. degree.

The author is with the Department of Electrical Engineering, Uni-
versit y of Melbourne, Parkville, Vie., Australia.

where uZ, UV, and U. are real functions of the x, y Cartesian

coordinates transverse to the direction of propagation, for

real (3.

The Lagrange density function d3@ for the problems being

considered may then be written in the convenient form

$(m) = +p(m)u2(~$2 + ~vz + ~z2)

– * { (x(~) + 2#(@)( Is.. 12 + Isuv 12 + 1s../2)

+ 2kf~) Re (.S~Svv* + S.US.,* + S.J..*)

+ 4M@)( {s..{’ + {.L12+ p.z19] (1)

where X@) and K@) are the Lame constants, p@) is the mass

density, and the superscripts denote the mth medium, as-

sumed homogeneous and isotropic. The strain components .S

in (1) are given by

(2)

where the factor exp {j(wt—~z) ] is omitted in each case, Note

that (1) is equivalent to the forms given in [10] and [11], ex-

cept that complex phasor quantities are taken into account by

conjugating all strain tensor components in the potential

energy term.

The exp {jot} variation for all t means that initial condi-

tions and past history are of no account. Furthermore,

vanishing stress is prescribed on the boundary of the structure

and body forces are neglected. Then for a unit length in the

direction of propagation, the classical form

principle [10] reduces to

m m

where

On taking the variation and integrating

becomes

of Hamilton’s

(3)

by parts, (3)
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where V is the vector operator eC(d/~x)+ea(d/dy)

+ez(–j/3), .St@ isthe surface formed by taking a transverse

cross section of the mth medium, B@ is the boundary of
s(@, and ~w(~) is the surface traction on B(m). Summation is

taken over all media and u and its variation 6U are constrained

to be continuous everywhere.

The surface integrals in (4) yield the equations of motion

within a medium and the contour integrals yield the natural

boundary conditions.

III. BOUNDARY CONDITIONS

There are five boundary conditions to be considered on a

transverse cross section of the structures of interest: 1) a

solid–air interface, regarded as a traction-free boundary; 2)

a rigid boundary; 3) a line of symmetry; 4) a line of anti-

symmetry; and 5) a solid–solid interface.

Condition 1) occurs more frequently than 2). The dis-

placement model formulation [15 ] yields prescribed stresses

on the boundary [including 2) above] as a natural condition,

and will be used here.1 Of the two methods [14] of satisfying

the remaining conditions, the method of forced constraints is

the easier to implement. This is because constraints on the

displacement components may be imposed simply by delet-

ing (or ignoring) a row and column of the relevant element

matrices. The alternative method required additional terms

in the variational integral, and is therefore less attractive in

the present formulation. Using the appropriate constraints

on displacement components, leaving the other components

unconstrained, and using the contour integrals in (4), it

follows that conditions 2)–4) may now be satisfied.

On a solid–solid interface, all displacement components

and the three stress components on the interface must all be

continuous. In the displacement model, displacement con-

tinuity is already constrained. Furthermore, consideration of

the integral along the interface from the contour integrals in

(4) shows that stress on the interface is continuous as a natural

condition for constrained displacement continuity. (This

follows from the classical form of Hamilton’s principle [14].)

It is noteworthy that the above conditions are less of a

problem than in multiple dielectric EM guiding [12], where,

for the usual formulation, the variational principle must be

modified to accommodate the required interface conditions.

IV. FINITE-ELEMENT FORMULATION

The popular displacement (or compatible) model is em-

ployed [15 ], and Silvester’s notation is adopted where ap-

plicable [6].

A. Displacement Interpolation

Consider the rth triangular element, assumed to be en-

tirely in medium m. Local area coordinates are defined for

any point (x, y) in the triangle [S]

ti = (ai + b,x + ctY)/2A

where A is the triangle area; bi = Yj — Yk; C. = Xh — Xj; % = xjyk

– xkyj; (xi, yi) are the coordinates of vertex i of the triangle;

i ranges from 1 to 3; and i, j, and k are cyclic (j= i+ 1, k

=j+ 1, mod 3). A set of n uniformly spaced points is defined

over the triangle and ordered in the usual way [6], where

n = (iV+ 1) (il+2)/2 and N> 1 is an integer. Let the function

UZ be represented by the discrete variables UCPat the respec-

tive triangle points $ =1, . . ., n, The interpolated function

for u. then is

p=l

where the aP are Newton–Cotes interpolation polynomials of

order N [6]. Similar expressions apply for UU and u. in terms of

UVP and U.@, respectively. Partial x and y derivatives follow

immediately, for example

while a typical term encountered on taking the variation is

The task of expanding 6Lr@) (the variation of the rth

element) in terms of the discrete variables and taking the

variation is indeed tedious, although straightforward in prin-

ciple. When this is done, terms can be grouped to permit easy

separation of geometric and material properties from terms

independent of these. The main results of the formulation are

given in the following paragraphs, omitting the detail of the

development.

B. Fundamental Matrices

It is found that just five fundamental matrices are suf-

ficient to represent &t,r@) together with a set of simple co-

efficients, Three of these matrices each have three permuta-

tions equivalent to a redefinition of the triangle variables ac-

cording to the vertex from which the element is viewed. The

method of permutation is as described for Q matrices [6].

The dimensionless ftindamental matrices are defined below

for a typical element @q (p, q =1, o . ., n):

(6)

where the superscripts refer to permutation numbers; the

~, I, and k are cyclic (mod 3); and integration is taken over
the surface of the finite element.

The first three of these have appeared in other contexts in

the literature: [MI] and [Mz](l) are directly related to Sil-

vester’s T and Ql matrices;2 and [Ms ] is the coupling matrix

presented by Daly [12]. The remaining two are necessary to

] Other formulations [15], [17], [18] would require either additional 2 [Ml] is obtained by halving the T matrix, while [Mz ]@ is just the
terms in the variational integral or constrained stress components on QI matrix, both as presented in [6, appendix], which differs in minor
traction-free boundaries, but could equally well be used. respects from the definitions of T and Q1.
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Fig. 1. Conventions used forinchrded and inclined angles f?and ~for
a triangular element.

represent the /.?-dependent terms in ~Lp@J and have been

evaluated forupto fourth-order elements [9]. These matrices

define thecoupling between theuzandu. field and between

the UV and UZ field for traveling-wave solutions.

C. Geometric Matrices

A set of geometric matrices, which arise from the grouping

of terms in 6L~@), can now be defined. They are expressed in

terms of (6) and coefficients related to the geometry of the

element under consideration. The geometric matrices are also

dimensionless, and are defined as follows:

[G,] = (2A/h’)[M,]

[G2] = Zcot O;[JZJ (’)
%

[G,] = [M,]

[G] = ~ Wk) [IIf4] t’)

[G91 = X (Gt/L-) [Msl “) (7)

where the summations are taken for i= 1, 0 . . , 3; i, j and k

are cyclic (mod 3); and h is any convenient dimension of the

profile being analyzed. ~; is the inclination of the side opposite

vertex i to the x axis and Oi is the interior angle at vertex i

(Fig. 1).

At this point it may be noted that the formulation must be

orientation dependent with respect to rotation about the z

axis. This is because the components U* and au are themselves

orientation dependent, in contrast to the EM case which is

formulated only in terms of z-directed components [6], [12].

D. Element Matrix Assembly

The expansion of (3) reveals that there are terms both in ~

and (32. This suggests that normalized phase “constant”

~=@h could best be used as the independent variable in the
determination of the modal spectrum leaving the squared

normalized phase velocity v = v2p(1J/~(1) to be extracted as the

eigenvalue. Using this scheme, the element variation is ap-

proximated by

&L,(~) = p(~)([xl,] – V[lil) [UT] (8)

where

[u,] = [{ U=P]{ {Uvp}j {Uzp} ]’, p = 1, ~ . . ,tz.

The element matrices [A,] and [B,] divide naturally into the

partitions by columns, as indicated by the partitioning of

[ u,], and by rows according to the equations arranged in

the order

The result is that [A,] and [B.] are both symmetric, and the

latter is also positive definite.

Finally, the partitions [P4 ]ii and [PB ];i of [A,] and

[B,], respectively, where i, j= 1, .. 0,3, may now be written

in terms of (7), ..,l. a..,. ..7--,. +.-.. ..,.,...: ---- --1.. -:.. ..s ,.-..L ,.,..

to be defined:

[PA],, =

[PA],, =

[PA],, =

[PA],, =

[PA],3 =

[PA]3$ =

[f’B],, =

[PB],2 =

w BLC, c oy ,L,,,,c I,, y L cqu1l C> u1lly >1.3 UL CclL1l >CL

j?2[G,] + C,[GZ] + C2[G31

C2[G4] + C3 [G5]

j?(C3[G,] + C,[G,])

~’[GI] + C1[G21 – C2[G3]

B(C,[G,] + C2[G,])

F21?@J [G,] + [G,]

[P~]jz = [P~]ss = ,I?2(W(’J/Ve@))2[Gl]

[~B]13 = [~B]23 = O (9)

where v,@) = (p@@/p@)) llZ is the bulk shear velicity in the mth

medium, Cl= (R@) +l)/2, C2= (I@ — 1)/2, Ca= (l?(~) — 3)/2,

and R(m) = (~(~)+ 2p@J)/~@).

Summation of the element variations (8) is performed in

the usual manner [13 ], and the matrix-eigenvalue/eigenvector

problem is solved by standard methods.

E. Computer Programming

The most significant feature of the above formulation is

that it requires only minimal computer coding for its im-

plementation. To illustrate this, assume that node coordinates

and interconnections are provided and that a compatible set

of variables has been generated for each triangle (or read from

data). In a prototype program, which accepts any problem

allowed by the formulation, the complete assembly of the

matrices was effected in 150 Fortran statements (including

four supporting routines for the permutation and manipula-

tion of matrices). The time taken for this assembly is always

insignificant compared to the solution time for the matrix

eigenval ue-eigenvector problem.

V. EXAMPLES

Testing of the formulation is a problem because there are

few acoustic propagation problems amenable to exact solu-

tion. Good agreement with some experimental results was

reported in [9] for a homogeneous ridge guide. Three ex-

amples will be given here-a more exact test for a homo-

geneous problem, a layered plate with straight crested solu-

tions, and a nonhomogeneous surface acoustic waveguide on

a finite substrate.
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Fig. 2. Homogeneous rectangular structure. (a) Two-dimensional cross
section showing boundary conditions on displacement components.
(b) Fourth-order element discretization.

A. Homogeneous Rectangular Region

Waldron [20] has pointed out that the ‘(cardinal” surfaces

encountered at physical boundaries of elasticity problems

preclude separable solutions. However, it is a simple matter

to construct problems, which may not be physical, having as

boundary conditions a combination of the symmetry condi-

tions outlined infection III. Such problems can yield separa-

ble solutions. Consider the homogeneous isotropic rectangular

region O<x <1, 0 <y <0.5, bounded by symmetry conditions

on x= O and y =0 and antisymmetry conditions on x= 1 and

Y=O.5 [Fig. 2(a)]. Putting h =0.5 and

UZ = D sin kzx cos kyy

Uu = E cos kzx sin kyy

ju. = jF cos kzx cos k,y (lo)

it follows that the prescribed boundary conditions will be

satisfied if

kz=fr; ky = qn

where P and q are odd integers. Substitution of (10) into the

displacement wave equations results in a 3 X 3 matrix eigen-

value problem, which has been solved for the displacement

amplitudes in (10) and phase velocity, for ~= 1.5 and Pois-

son’s ratio =$. The problem has also been solved using the

fourth-order finite-element discretization shown in Fig. 2(b).

The first few eigenvalues obtained from the exact solution and

corresponding percentage deviations in the finite element

solutions are summarized in Table I. Agreement is close and

is better than 1 percent for the first 13 modes for the dis-

cretization used. Table II shows the displacement field am-

plitudes for mode 1, again showing the close agreement.

B. Layered Plate

Consider an infinite plate of thickness 2s, layered on both

sides by a second material of thickness h (Fig. 3). The two

limiting cases s/k = O (infinite plate, thickness 2k) and s/k
+ M (layered half space) have known solutions. The funda-

mental Rayleigh-type mode for this structure has been

analyzed using the above formulation by constraining the Uz

ty

m“
Afitp% h

T

\Am’fT--2r‘x

Fig. 3. Dimensions of tbe layered plate, infinite in the x direction and
symmetric about tbe x axis.
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—b (late Equatwns, #h=O

= // Frite Elemnt Therry
-’” 2.0 lb

Lmt Gradient
.

;/
.=

o~
o 1 2 3 4 5

Pnpx@m Constant ~

Fig. -i. Phase-velocity dispersion curves for the fundamental antisym-
metric mode of the layered plate, with s/h as parameter, McZ)/p[lJ
= 13.77, p@/ptlj = 1.39, and Poisson’s ratio= 0.25 in each medium.
Full curves are a—Tolstoy–Usdin theory [21 ], and b—calculated
from plate equations. Dashed c~rves are for finite-element theory and
dotted line is limit gradient at ~ = O, calculated from Tiersten [2].

TABLE I

EIGENVALUES FOR RECTANGULAR HOMOGENEOUS REGION

3

IIMode w
Exact

[1 I“2
Eigenvalue ~ Fini.ke Element SOln.

s % dev.$ation
I

1 11 9.483114 -0.00009
2 11 2.37o78 0.00041
3 11 2.37078 0.0011

3.1. 18,2561 0.0063.

: 31 4.5640 0.03

6 .31 4.5640 0.06

Note: ~ = 1.5; Poisson’s ratio= ~.

TABLE II

EIGENVECTOR FOR MODE 1, TABLE I

*

field to zero and analyzing a narrow strip to enforce straight

crested solutions. Dispersion curves obtained for various

s/k using this procedure are plotted in Fig. 4 (dashed curves).

Good agreement is obtained with the limiting cases: Tolstoy

and Usdin’s [21] layered half-space calculation (whose ma-

terial constants were used), and with plate modes, calculated

from equations in [22]. The gradient of the curve at B= O

(dotted line, Fig. 4) was calculated from Tiersten [2, eq.

4.15], allowing for the different normalization used there.

Excellent agreement has also been obtained with Tiersten’s

gold on fused quartz layered half-space calculation. In every
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Fig. 5. Geometry of rectangular gold overlay
quartz substrate.

L0.9 ,

on a rectangular fused

I l“%--’. — Tierstm’s Theory, G45.8

Ik

1’ A -.,

/\\
0s ; /’ \ \

--- Fdte Element TMry

IS ,/ \A/ -;- - (Finite Suktnrte)

I
/\’\

‘\\

3>.
If \ \ ~,

> 0,7
II / \ \

121, x, ~,’%
~: / %, \ ~,

; I /1 \\ \

-g \ < \\
\ \\

‘-

: 0.6
/iG=l ‘\\ -.

‘\ %,

z
I

-.

‘L -- -..
.= ‘.

05

I

ol~
0.3 0.4 0?

RcpagMOn Constant ~

Fig. 6. Dispersion curves for the gold overlay on a fused quartz sub-
strate having the geometry of Fig. 5 for s/w=10 and with G=w/h

as parameter. Tiersten’s result for G= 15.6 on an infinite substrate is
shown (full curve) forcornparisonwith finite-element theory (dashed
curves).

case, the displacement functions were very nearly straight

crested, as required.

C. Overlay Guide

The ability of an overlay of gold on fused silica to guide

surface acoustic waves was first reported by White [19] and

analyzed by Tiersten [2]. Consider such a guide on a prac-

tical (finite) substrate having the dimensions indicated in

Fig. 5. Dispersion characteristics have been obtained for the

first mode symmetric about the bisector of the overlay for

s/w = 10 and various G = w/?z (Fig. 6).

The curves agree closely with other analyses of the un-

bounded problem [2], [23 ], except at low frequencies where

the transition from the guide mode to the first antisymmetric

mode of the substrate is clearly evident. Below this transition

frequency, displacement fields show that the mode is en-

tirely characteristic of the substrate, and therefore cannot be

said to be guided by the overlay. Analysis shows that the

vertical sides of the substrate have little effect on the curves

of Fig. 6. It follows that low-frequency performance for

s/w # 10 can be estimated using the linear relationship be-

tween infinite plate characteristics and plate thickness.

VI. CONCLUSIONS

The finite-element formulation presented enables a large

class of acoustic propagation problems to be solved. In prin-

ciple, modes of propagation may be determined for any

structure whose cross section consists of regions of Iossless

homogeneous isotropic media in rigid contact and uniform in

the direction of propagation Only minimal computer coding

is required to set up finite elements of any desired order. The

three examples cited demonstrate the accuracy and versatility

of the method and represent a comprehensive test of the

formulation, showing close agreement with other analyses.
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